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We analyze the minimum achievable mean-square error in frequency-

modulated continuous-wave (FMCW) range estimation of a single stationary

target when photon counting detectors are employed. Starting from the

probability density function for the photon arrival times, we derive the

Cramér-Rao bound (CRB) and highlight three important regimes: the

dark-noise-dominated regime wherein the CRB improves quadratically with

the mean received photon number, the shot-noise-dominated regime (i.e.,

the standard quantum limit) in which the improvement is linear, and the

dead-time-dominated regime wherein the CRB is constant. We show that

if both signal and reference photons cost equal, the shot-noise-limited

CRB is minimized when the local field strength is equal to that of the

target-return field, and the average frequency-modulation energy determines

the performance. Simulation of the maximum-likelihood (ML) estimator

shows that its performance approaches the standard quantum limit only

when the mean received photons are between two thresholds. We provide

analytic approximations to these thresholds for linear frequency modulation.

Finally, we report on a proof-of-concept experiment in which ML estimation

outperforms conventional beat-frequency estimation. c© 2012 Optical Society

of America

OCIS codes: 010.3640, 270.5290, 030.5260, 000.5490, 040.1345

1. Introduction

In its essence, optical ranging is a problem of estimating the round-trip flight time of a

phase- or amplitude-modulated optical beam that reflects off of a target. Frequency mod-

ulated continuous-wave (FMCW) ranging systems obtain this estimate by performing an

interferometric measurement between a local frequency-modulated laser beam and a delayed

copy returning from the target. The range estimate is formed by mixing the target-return field
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with the local reference field on a beamsplitter and detecting the resultant beat modulation.

In conventional FMCW ranging the source modulation is linear in instantaneous frequency,

the reference-arm field has many more photons than the target-return field, and the time-

of-flight estimate is generated by balanced difference-detection of the beamsplitter output,

followed by a frequency-domain peak search. This technique is well-known to achieve range

resolution proportional to c/2Δf in a T -second chirp window, where c is the speed-of-light,

Δf is the chirp bandwidth, and the time-bandwidth product satisfies TΔf � 1 [1, 2].

Important advances have been reported in the recent literature for FMCW ranging sys-

tems. To revisit several examples, very broad chirp bandwidths have been achieved using

active feedback stabilization [3,4]. Alternative frequency modulation functions, such as sinu-

soidal modulation [5, 6] and pseudorandom modulation [7], have been employed to improve

the range resolution. These results, and much of the literature in general, has focused on

the strong-local-oscillator regime, wherein the mean photon number in the reference field

greatly exceeds that in the target-return field over the integration window of interest. This

limitation has been removed in recent work [8], where target detection with a weak local

oscillator has been analyzed in detail.

Although the literature on improving the performance of FMCW ranging systems is exten-

sive, limited results are available on its ultimate performance bounds, which is governed—

after all technical noises have been eliminated—by the photodetection statistics resulting

from the quantum nature of the incident optical fields. With high efficiency, high bandwidth,

and low noise photon-counting detector technologies rapidly maturing, it is feasible to antic-

ipate that FMCW ranging systems will utilize photon-counting detectors in the near future.

Therefore, in this paper we focus both on determining the ultimate estimation accuracy

afforded by FMCW ranging, and on estimation algorithms that approach this performance.

Because range is related to time delay by a constant (the speed of light), we present all

of our results in terms of the latter and omit the trivial scaling of these results to express

them as range. Our treatment is founded on a rigorous statistical characterization of the
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(random) photoelectron emission times as a function of the incident optical field, including

the deleterious effects caused by dark current and dead time. These statistics permit us to

derive the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging and to derive

the maximum-likelihood (ML) estimator, whose performance approaches this bound under

some photon-flux conditions. Here, we determine these conditions and validate the theory via

simulation and experiment. Because our emphasis is on FMCW receivers employing photon-

counting detectors, we limit the focus of this paper to analyzing the performance when a

single specularly-reflecting target is present within the range of interest. Nonetheless, the for-

malism developed herein could be extended to include diffuse target reflections [9], multiple

targets within the range-of-interest [10], and atmosphere-induced distortions [11], with the

appropriate modifications to statistics governing the output processes of the photon-counting

detectors.

Our paper is organized as follows. In Section 2 we define the problem of interest, and

then we derive the CRB for arbitrary frequency modulation. First, we consider only the shot

noise of the incident (coherent-state) fields, and determine the optimal strength of the local

reference field relative to that of the target-return, as well as the CRBs achieved by different

modulation functions. We then extend our formalism to include dark counts and dead time

in the detector, and quantify the degradation in performance. In Section 3, we derive the

ML estimator and show via simulation that when the total mean received photon number

is between two thresholds its mean-square error approaches the CRB. We derive analytic

approximations to these threshold values for the case of linear frequency modulation. Finally,

in Section 4, we report experiments with linear frequency modulation and show that the ML

estimator performs better than the conventional difference-detection followed by frequency-

domain estimation of the beat frequency. Section 5 concludes the paper with a discussion of

our key results.
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2. Problem formulation and the Cramér-Rao bound

Figure 1 illustrates the FMCW ranging system in consideration. We assume that an ideal

laser field1 with center frequency ωc is split via a beamsplitter into a signal field ES,1(t)e
−iωct

and a reference field ER,1(t)e
−iωct, where Ek,1(t) =

√
Nk,1/Te

iφ(t) for 0 < t ≤ T and k =

S,R denotes their complex baseband temporal modulations. Here, Ek,1(t) are normalized to

have units
√

photons/s, such that Nk,1 denotes the mean photon number over the T -second

window. The signal field is transmitted to interact with the target, yielding a target-return

field ES,2(t). In this paper we have assumed a single specularly-reflecting target, so ES,2(t) =

rSES,1(t− t0), where rS ≤ 1 is the field reflection coefficient and t0 ∈ T is the relative time

delay between the signal- and reference-arm fields within the a priori domain of uncertainty

T . The reference arm field remains local to the ranging instrument, and is therefore assumed

to go through a simple attenuation by rR ≤ 1, yielding ER,2(t) = rRER,1(t). The receiver

mixes the target-return field and the reference field with a 50/50 beam-splitter, resulting in

ED,m(t) =
ES,2(t) + (−1)m+1ER,2(t)√

2
, (1)

at its two output ports m = 1, 2. ED,m(t) are incident on two matched photon counters for

t ∈ (0, T ], giving rise to the photocurrent processes im(t). We assume im(t) are normalized by

the electron charge to have units photoelectrons/s, and are therefore sequences of unit-area

impulses occurring at each photoelectron emission epoch.2 With ideal laser light incident on

the photodetectors, im(t) are independent discrete stochastic point processes whose statistics

are governed by several uncertainties. First, energy measurements on coherent-state fields are

stochastic due to the quantum nature of light (shot noise) [13]. Second, there are stochastic

1Throughout this paper an ideal laser field refers to a paraxial and quasimonochromatic optical field in
a single spatial and polarization mode, which is also in a coherent state of the quantized field operator, such
that it gives rise to Poisson statistics when an ideal photon-counting measurement is performed on it [12].

2This characterization of the photodetector output implies that the detector has infinite electrical band-
width, allowing the arrival times to be precisely resolvable. In practice, there is little loss in adopting this
idealization if the photodetector impulse response is significantly narrower than the mean photoelectron
interarrival time.
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electron emissions from the photosensitive area of the detector when no light is incident

(dark counts). Third, after every photoelectron emission there is a period during which the

detector is unable to generate any additional photoelectrons regardless of the incident field

amplitude (dead time). The first of these effects is fundamental, whereas the latter two are

practical limitations to state-of-the-art photon counters that can be improved upon in the

future.

An important component in the Fig. 1 system is the algorithm that generates an estimate

t̂0 of the time delay t0, based on the occurrence times of the photoelectrons from the two

detectors. Different estimators will achieve different mean-square error values, an exhaustive

characterization of which is not feasible. The CRB, on the other hand, is a lower bound on

the mean-square error achievable by any unbiased estimator [2]. Furthermore, the CRB is

achieved by the ML estimator if an efficient estimator exists, and even if one does not exist

the ML estimator often asymptotically approaches the CRB at high signal flux. Therefore,

we first derive the CRB for the FMCW ranging system described above. Then, we focus on

the ML estimator and evaluate its performance relative to the CRB.

2.A. The standard quantum limit

Let us first consider near-ideal photon counters and develop some insights into the ultimate

performance of FMCW ranging. When ED,1(t) and ED,2(t) are incident on matched photon-

counting detectors with quantum efficiency η, zero dark current and zero dead time, im(t)

are statistically independent inhomogeneous Poisson point processes with rate functions [14]

Λm(t; t0) =
ηNI

2T

[
1 + (−1)m+1β cos

(
D(t; t0)

)]
, (2)
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for m = 1, 2.3 Here, D(t; t0) ≡ φ(t)−φ(t−t0) is the beat modulation that carries information

on t0,

β ≡
2
√

NS,2NR,2

NS,2 +NR,2
(3)

is a parameter between 0 and 1 indicating the relative strength of the target-return and

reference fields in terms of their mean photon numbers Nk,2 ≡ r2kNk,1 for k = S,R, and

NI ≡ NS,2 + NR,2 is the total mean number of photons incident on the two detectors. The

probability density function for observing n1 photodetection events in the first detector at

event times {u1, . . . , un1} ∈ [0, T ] and n2 photodetection events in the second detector at

event times {v1, . . . , vn2} ∈ [0, T ], is given by [14]

p(n1, u1, . . . , un1, n2, v1, . . . , vn2 ; t0)

=

[
n1∏
i=1

Λ1(ui; t0)

][
n2∏
j=1

Λ2(vj ; t0)

]
e−

∫ T
0 dt [Λ1(t;t0)+Λ2(t;t0)]. (4)

From Eq. (4), the CRB for t0 is expressed as [2]

CRB ≡ −
〈
∂2 log p(n1, u1, . . . , un1, n2, v1, . . . , vn2 ; t0)

∂t20

〉−1

, (5)

where the angled brackets denote the expectation over all of the random variables.

In the Appendix we show that substituting Eqs. (2) and (4) into (5) leads to

CRB =
1

ηNI

[
1

T

∫ T

0

dt
β2 sin2

(
D(t; t0)

)
1− β2 cos2

(
D(t; t0)

) φ̇2(t− t0)

]−1

, (6)

where φ̇(t) ≡ dφ(t)/dt. For a fixed ratio between the target-return and the reference-arm

mean photon numbers, i.e., for β constant, the CRB follows a 1/NI scaling, which is referred

to as the standard quantum limit because it is the best possible scaling achievable with

3We use the common notation that the variable t in the argument of the rate function is separated from
the parameter of interest t0 with a semi-colon.

7



photon counting of ideal laser fields. In addition, because the first term in the integrand is

maximized at β = 1 for all t, we find

CRB ≥ 1

ηNI

[
1

T

∫ T

0

dt φ̇2(t)

]−1

, (7)

for all NI ≥ 0 and t0 ∈ T , with equality if and only if β = 1. This optimal CRB is the

main result of this section, and it leads to several important insights. First, given a total

mean received photon number NI it is optimal to have NS,2 = NR,2. Second, whereas in

general the CRB depends on t0, the optimal CRB is independent of the true value of the

parameter to be estimated. Finally, the optimal CRB depends only on the average energy

(L2 norm) of the frequency modulation function. Therefore, all frequency modulations with

equal L2 norm attain the same optimized CRB. Table 1 summarizes the L2 norms of several

commonly employed frequency modulations in FMCW ranging, quantifying their relative

performance at equal NI .

Setting β 	 1 in Eq. (6), we derive the CRB in the strong reference-arm regime as

CRB ≈ 1

β2ηNI

[
1

T

∫ T

0

dt sin2
(
D(t; t0)

)
φ̇2(t− t0)

]−1

, (8)

where the term outside the brackets is approximately equal to 1/(4ηNS,2). This CRB is sig-

nificantly worse than the optimal CRB derived above. This is because we have assessed equal

cost to both signal photons and reference photons in deriving the optimal CRB. This cost as-

signment pertains to scenarios where local resources and those used for target interaction are

optimized jointly, e.g., to minimize wall-plug power consumption. However, alternative cost

assignments are also possible. For example, in noninvasive imaging of a biological sample or

to ensure low probability of detection in a military application, it may be more appropriate to

assign cost only to the photons that interrogate the target and have cost-free reference-arm

photons. It is straightforward to optimize—possibly numerically—the Eq. (6) expression for

various cost assignments in the two arms, but here for brevity we restrict our attention to
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the equal-cost scenario.

In Fig. 2 we have plotted the ratio of the CRB from Eq. (6) to the optimal CRB in

Eq. (7), as a function of β ∈ (0, 1]. The slope of this ratio is steep for β ≈ 1, which causes

significant penalty for a small deviation from the optimum. As β decreases from 1 towards 0

the ratio eventually becomes proportional to 1/β2 and converges to the strong-reference-arm

approximation above. We observe from the figure that this convergence occurs when β < 0.3.

2.B. Dark noise and dead time

The results above define the best possible performance attainable with ideal laser light and

near-ideal photon counting, with subunity quantum efficiency being the only nonideal effect.

Now we add dark counts and dead time to quantify the degradation in the CRB relative to

the standard quantum limit.

Suppose that the photon-counting detectors from Fig. 1 have equal and constant dark

count rates λd, but no dead time. Then, the dark counts in each detector form a homoge-

neous Poisson process with statistics equivalent to having on average Nd ≡ λdT/η additional

photons incident in a T -second interval. Therefore, the two photodetector outputs are in-

dependent inhomogeneous Poisson processes as stated in the previous subsection, but now

with the modified rate functions

Λm,d(t; t0) =
ηNI,d

2T

[
1 + (−1)m+1βd cos

(
D(t; t0)

)]
(9)

for m = 1, 2, where NI,d ≡ NI + 2Nd and βd ≡ β/(1 + 2Nd/NI) are the two parameters

that are modified due to dark counts. Next, suppose that the detectors also have equal and

deterministic nonparalyzing dead time τ .4 In this case, the rate function itself becomes a

stochastic process that causally depends on prior arrival times. Consequently, the detector

output is modeled as a self-exciting point process [14]. The probability density function for

4A nonparalyzable photon counter is one in which a photon absorption or a spontaneous charge release
during a dead time does not extend the duration of the dead time interval. Dead time may be random in
general, but for analytic simplicity here we assume it is a deterministic period.
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observing n1 photodetection events in the first detector at event times {u1, . . . , un1} ∈ [0, T ]

and n2 photodetection events in the second detector at event times {v1, . . . , vn2} ∈ [0, T ] is

now given by [14]

p(n1, u1, . . . , un1, n2, v1, . . . , vn2 ; t0) = pd(n1, u1, . . . , un1; t0)pd(n2, v1, . . . , vn2; t0), (10)

where

pd(nm, u1, . . . , unm) ≡
[

nm∏
i=1

Λm,d(ui; t0)

]

× exp

{
−
∫ u1

0

dtΛm,d(t; t0)−
nm+1∑
i=2

∫ ui

ui−1

dtΛm,d(t; t0)wτ (t− ui−1)

}
(11)

for m = 1, 2. Here, we have defined unm+1 ≡ T for compactness of the expression, and

wτ (t) ≡ 1 if t > τ but is 0 otherwise.

Deriving the CRB is straightforward by substituting Eqs. (10) and (11) into Eq. (5), so we

postpone the tedious details to the Appendix. Here we highlight several asymptotes to the

CRB expression when the rate of change of Λm,d(t; t0) is much slower than 1/τ , specifically,

when the frequency modulation and dead time satisfy |φ̇(t)− φ̇(t− t0)|τ 	 1 for all t ∈ (0, T ]

and t0 ∈ T :

CRB ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2Nd(1+α)
ηN2

I β
2 K−1

1 (t0) NI 	 2Nd and α 	 1

1
ηNI

K−1
2 (β, t0) NI � 2Nd and α 	 1

τ
2T
K−1

3 (β, t0) NI � 2Nd and α � 1,

(12)

where α ≡ ηNI,dτ/(2T ) is the average fraction of photoelectron counts lost during the dead
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times, and the three terms independent of photon number are

K1(t0) =
1

T

∫ T

0

dt sin2
(
D(t; t0)

)
φ̇2(t− t0), (13)

K2(β, t0) =
1

T

∫ T

0

dt
β2 sin2

(
D(t; t0)

)
1− β2 cos2

(
D(t; t0)

) φ̇2(t− t0), and (14)

K3(β, t0) =
1

T

∫ T

0

dt
β2 sin2

(
D(t; t0)

)[
1 + β2 cos2

(
D(t; t0)

)]
[
1− β2 cos2

(
D(t; t0)

)]2 φ̇2(t− t0). (15)

The asymptotic expressions in Eq. (12) represent three distinct trends with respect to the

mean incident photon number. When the mean dark count is significantly greater than the

mean signal photon count (Nd � NI) and dead time is short enough to have negligible impact

on the arrival rate (α 	 1), the performance is dark-noise dominated. In this regime the

CRB is significantly worse than the standard quantum limit, and it improves quadratically as

the mean incident photon number increases. At the other extreme, when the mean incident

photon number is so large that the detector is almost universally blocked by dead time

(α � 1) the output of the photon-counting detectors saturate irrespective of the mean

received photon number. Here the performance is dead-time dominated and the CRB reaches

a floor. Often there is an intermediate regime between these two extremes wherein the signal

counts dominate over dark counts (NI � Nd), yet the dead time impact is negligible (α 	 1).

In this regime the performance is shot-noise dominated and the CRB approaches the standard

quantum limit. If dark counts or dead time are too high, the ranging performance may never

become shot-noise dominated, thus the standard quantum limit may not be attainable.

In Fig. 3 we have plotted the CRB, normalized by T 2 to render it dimensionless, when

φ̇(t) = Δft/T , i.e., when linear frequency modulation is employed. The dashed curves cor-

respond to the aforementioned asymptotes, and the solid line is the numerically-evaluated

CRB from Eq. (42) in the Appendix. The figure indicates that the asymptotes provide a good

approximation to the CRB in their applicable regime. Furthermore, the transition thresholds

are well-approximated by the intersection points of these asymptotes.
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3. Maximum-likelihood estimation of range

In this section we derive the ML estimator and show via simulation that its performance

approaches the CRB when the incident photon number satisfies N� < NI < Nu, where N� and

Nu are lower and upper breakdown thresholds respectively. The lower threshold is due to t0

having a nonlinear relation to the observation statistics, whereas the upper threshold is due

to dead time dominating the observation statistics. We will derive analytic approximations

for N� and Nu in the case of linear frequency modulation.

The ML estimator is defined as

t̂0 ≡ argmax
t0∈T

log p(n1, u1, . . . , un1, n2, v1, . . . , vn2; t0), (16)

where T is the support of t0. Using the probability density function in Eq. (10) and following

straightforward simplifications (see the Appendix for details omitted here) we arrive at

t̂0 = argmax
t0∈T

∫ T

0

dt
[
i1(t)h1(t; t0) + i2(t)h2(t; t0)

]
, (17)

where the impulse responses are given by

hm(t; t0) = log
(
1 + (−1)m+1βd cos

(
D(t; t0)

))
+ (−1)m+1αβd cos

(
D(t; t0)

)
, (18)

for m = 1, 2. Thus, a sufficient statistic for the ML estimator is the sum of filtered photode-

tector outputs, where the filter impulse responses are linear and time-varying.

Let us consider several limiting cases of this general estimator. When dead time is negli-

gible, i.e. α 	 1, only the first term in Eq. (18) survives, and the impulse responses

hm(t; t0) ≡ log
(
1 + (−1)m+1βd cos

(
D(t; t0)

))
(19)

are recognizable as the log-matched filters to the photoelectron generation rates in each
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detector. If βd 	 1 and α is arbitrary, which occurs with a strong local field (β 	 1) or

when dark noise dominates the signal energy (Nd � NI), the ML estimator can be simplified

as

t̂0 ≈ argmax
t0∈T

∫ T

0

dt
(
i1(t)− i2(t)

)
cos
(
D(t; t0)

)
, (20)

i.e., difference detection followed by a matched filter to the rate function generates a sufficient

statistic. If we further specialize our result to linear frequency modulation φ̇(t) = Δft/T , we

obtain

t̂0 ≈ argmax
t0∈T

�
{
eiΔft20/(2T )

∫ T

0

du
(
i1(u)− i2(u)

)
e−iΔft0u/T

}
, (21)

i.e., difference detection followed by a Fourier transform and peak detection, which is often

used in practice as the range estimator, is also approximately the ML estimator in this

regime. This result is not surprising. Having a strong local field or having noise dominated

by dark counts both imply that the photodetector output processes have a signal-dependent

mean, but a largely signal-independent noise process. This, together with a Gaussian random

process approximation that becomes asymptotically tight when the photoelectron counts are

large, yields an additive Gaussian noise channel for which the aforementioned estimator is

exactly maximum-likelihood achieving [2].

Figures 4–5 plot the simulated mean-square error (MSE) of the ML estimator for linear

frequency modulation as a function of ηNI . Figure 4 represents the near-optimal case with

Nd = 0 and τ = 0 and β ≈ 1. We observe that the ML estimator tracks the CRB well

for large values of NI . However, when NI falls below a threshold, which we denote with

N�, the estimator performance rapidly deteriorates towards a uniformly-distributed random

guess of t0 ∈ T . Figure 5(a) includes dark counts and dead time, specifically Nd = 1 and

τ = 100 ns, and Fig. 5(b) shows a case when β 	 1. In both cases, the qualitative behavior is

the same. First, as in the case with no dark counts and dead time, for NI < N� the estimator

rapidly deteriorates to random uniform guesses. However, unlike the previous case, a second

breakdown regime is observed when NI exceeds a threshold we denote as Nu. In all three
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cases the MSE performance is consistent with the CRB for some region of NI , but otherwise

deviates from this optimal bound. It is important to determine this region in terms of the

relevant system parameters, so that the CRB is utilized for performance predictions only

within this NI regime.

3.A. The lower breakdown threshold N�

We will restrict our derivation to the case of linear frequency modulation. Our approach—

motivated by prior literature—will be to first introduce an analytic model that approximates

the MSE of the ML estimator, and then to derive N� from this model [15–17].

State-of-the art photon counting detectors yield typically better than kHz-rate dark counts,

which implies no more than low tens of dark counts per realistic integration windows (∼

1–10msec). Because we observe that the threshold often occurs at much greater photon

numbers, we assume Nd ≈ 0 in subsequent derivation. We also assume that N� occurs in

a regime where the photon flux is low enough to warrant the α ≈ 0 approximation. We

begin by assuming that all possible outcomes can be grouped into two classes of events:

1) typical events, i.e., those outcomes that are sufficiently informative and yield average

performance close to the CRB, and 2) atypical events, i.e., those outcomes that give little to

no information and yield average performance close to a random uniform guess of t0 ∈ T .5

Based on this classification we write the MSE model for the ML estimator as

〈
(t0 − t̂0)

2
〉
= σ2

APA + CRB(1− PA), (22)

where the CRB is given by Eq. (42), but with Nd = 0 and α = 0 it simplifies to the Eq. (6)

expression. PA denotes the probability that the observed photon arrival sequence belongs to

the atypical set, and

σ2
A ≡ (T2 − T1)

2

12
+

(
T2 + T1

2
− t0

)2

(23)

5We have implicitly assumed that the estimator is required to generate an estimate at the end of the
observation period, regardless of the event outcome.
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is the MSE of a uniform random guess. Here we have used T1 ≡ mint0∈T t0 and T2 ≡

maxt0∈T t0 to denote the end-points of T . From the Eq. (22) model we define N� as the NI

value that satisfies

PAσ
2
A = (1− PA)CRB. (24)

Thus, good agreement between the model and the simulated performance hinges on an

accurate characterization of PA. When the total photoelectron count is zero or one, the ML

estimate is uniform over T , corresponding to atypical events. So, we can write

PA = P (n < 2) + P (n ≥ 2)PA|2 (25)

where n ≡ n1 + n2 is the total number of counts from both detectors within the observation

window, P (n < 2) = (1 + ηNI)e
−ηNI , and PA|2 denotes the atypical event probability condi-

tioned on two or more arrivals. Unfortunately, it is impractical to ascertain the precise subset

of outcomes that are atypical. Therefore, we resort to deriving a tractable approximation to

PA|2 in the β 	 1 and NI � 1 limit, then using it universally.

To evaluate PA|2, recall from Eq. (21) that for β 	 1 and φ̇(t) = Δft/T the cost function

for the ML estimator is approximately

C(t0) = β�
{
eiω

2T/(2Δf)

[∫
dt
(
i1(t)− i2(t)

)
e−iωt � A(ω)

]} ∣∣∣∣
ω=Δft0/T

, (26)

where � denotes convolution and A(ω) ≡ e−iωT/2 sin(ωT/2)/(πω) is the Fourier transform

of the observation window t ∈ (0, T ]. Thus, the cost function has an effective resolution

width equal to 4π/Δf . Dividing T into nbin + 1 bins with centers at tk = T1 + k4π/Δf , for

k = 0, . . . , nbin, we approximate PA|2 by

PA|2 = 1− P

(⋂
� �=k∗

C(tk∗) > C(t�)

)
(27)
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where k∗ denotes the bin index that contains the true value t0. In other words, a typical

event occurs if the cost function is peaked at the bin encompassing the true t0. A tractable

expression for the right-hand side of this equation follows from assuming C(tk) are jointly

Gaussian random variables. The mean of C(tk) is 〈C(tk)〉 = (ηNIβ
2/2)δk,k∗, and the covari-

ance is given by cov(C(tk), C(t�)) = (ηNIβ
2/2)δk,�, where δ is the Kronecker delta function.

Consequently, via Eq. (27) we obtain

PA|2 ≈ 1−
[
1−Q

(√
ηNIβ/2

)]nbin

, (28)

where Q(x) ≡
∫∞
x
dt e−t2/2/

√
2π. Substituting Eq. (28) back into Eq. (25) yields PA.

Having evaluated all of the components in Eq. (24), we can solve forN�. We perform several

simplifying approximations to derive a tractable analytic expression. First, via Eq. (6) we

use

CRB−1 ≈ ηNIβ
2εφ, (29)

where εφ ≡ T−1
∫ T

0
dt φ̇2(t). Next, we use (1− x)n ≈ 1− nx for nx 	 1 and Q(x) ≈ e−x2/2/2

to obtain, via Eqs. (25) and (28),

PA ≈ PA|2 ≈
nbin

2
e−ηNIβ

2/8. (30)

With the aid of these approximations we solve for the breakdown threshold as

N� = − 8

ηβ2
W−1

(
−1

4εφσ2
Anbin

)
, (31)

where W−1(y) is the Lambert-W function along the −1 branch, formally defined as the

inverse of the function y = xex for x < −1 [18].

In Figs. 4 and 5 we have plotted the N� predicted by Eq. (31), as well as the MSE model

from Eq. (22) and the simulation-based MSE. In all three cases, the approximation to N�

matches very well with the knee in the MSE model, indicating that it is a good analytic
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approximation to the transition in the model. In comparing the model to the simulated

MSE results we find that N� is higher than the breakdown threshold observed in simulation,

but within a factor of three. Therefore, Eq. (31) offers a tractable approximation to the

breakdown threshold that conservatively predicts the NI > N� region in which the ML

estimator may approach the standard quantum limit.

3.B. The upper breakdown threshold Nu

Dead time impairs the estimation performance when the average arrival rate of the inci-

dent photons significantly exceeds 1/τ , such that the detectors cannot respond to many

information-carrying incident photons.

The impulse responses applied to im(t) in the ML estimator—stated in Eq. (18)—indicate

that the sufficient statistic in the presence of dead time is appreciably different from that

when τ = 0 if α is large enough to render the second term comparable to the first term.

Suppose x ≡ |βd cos
(
D(t; t0)

)
| ∈ [0, βd] in Eq. (18). The ratio of the first and second term

amplitudes is smallest when x = βd, so it is sufficient to consider this extreme point. Defining

the precise ratio at which the threshold behavior manifests is heuristic in nature, but we

choose

log(1 + βd)/(αβd) = 1/2 (32)

as a value that demonstrates consistent agreement with the simulated performance. Rec-

ognizing that βd ≈ β and α ≈ ηNIτ/(2T ) for NI � 1, we arrive at the upper threshold

value

Nu = max

{
log(1 + β)T

βτ
,N�

}
, (33)

where the maximum is due to the fact that if the first term inside the brackets is less than N�

then atypical events dominate the performance and the dead-time-induced blocking behavior

is not visible until NI > N�.

The Nu we have defined above is plotted in the two simulations presented earlier in Fig. 5.

In both cases it accurately predicts the regime in which dead time deteriorates the MSE of
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the ML estimator. In Fig. 5(a) the three performance regimes are distinctly identifiable, and

the MSE approaches the standard quantum limit only when N� < NI < Nu, as expected. In

Fig. 5(b), on the other hand, we illustrate a β 	 1 case when N� = Nu, so the optimal 1/NI

scaling is never attainable. When the incident photon flux is sufficiently high to emerge from

the regime in which atypical events dominate, it has already become too high for the dead

time of the photodetectors. Consequently, the MSE transitions from the first breakdown

regime directly into the dead-time-blocked regime, and never achieves shot-noise-limited

performance.

In summary, the ML estimator can achieve the standard quantum limit with the optimal

1/NI scaling of the MSE, provided that the total mean photon number incident on the two

detectors satisfies

N� < NI < Nu, (34)

where N� is given in Eq. (31) and Nu is given in Eq. (33). If we have Nu = N�, then the

standard quantum limit is not attainable.

4. Experimental Results

We have performed a proof-of-concept FMCW ranging experiment using linear frequency

modulation and photon-counting Geiger-mode avalanche photodiodes (APDs). Here we re-

port on the performance of the ML estimator and discuss insights gained from this experi-

ment.

Figure 6 provides a block diagram of the experimental setup. A linear sawtooth frequency

modulation with rate 33.3GHz/ms and period 1.25ms is applied to a 1539 nm center-

wavelength distributed feedback laser, using active phase locking. 10% of the output power is

used in this feedback loop. Furthermore, only the central linearized portion of each period is

used in collecting the experimental data, to avoid transients that occur around the sharp fre-

quency transitions. The remaining output power (90%) passes through several attenuators,

including a variable attenuator for power adjustment, and 99/1 splitters for power monitor-
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ing. An in-line polarizer is used to maintain polarization. This source field is then split into

the signal and reference arms via a 50/50 splitter. The signal field passes through a circulator

and then is sent out to the target mirror, which is placed approximately 0.8m away on the

optical bench. The return field is recoupled into the circulator and is recombined with the

reference field on a 50/50 splitter. The resulting beat frequency is approximately 40 kHz,

indicating a relative path length of approximately 18 cm. The outputs of the beamsplitter

are incident on two matched Geiger-mode photon-counting APDs, which have quantum effi-

ciency of 0.1, dark noise level 1000 counts/s, and dead time 1μs. The output photoelectrons

in each detector are time-tagged via a time-to-digital converter (TDC) unit over a period of

990μs. The reference arm path includes a short delay line for fine adjustments to the beat

frequency, and an in-line polarizer to maintain polarization.

The experiment was run at 21 flux levels spanning approximately from 10 to 30000 mean

incident photons per period,6 and at each flux rate 8000 independent data sets were collected.

Two estimators were applied to each set: the ML estimator, and an estimator that performs

difference detection followed by evaluating the square-magnitude of the Fourier transform

and peak identification. For convenience, hereon we refer to the latter as the Fast Fourier

Transform (FFT) estimator. In order to achieve good performance it was necessary to make

a small modification to the ML estimator in Eq. (16). The sharp transitions at the end of

each period in the sawtooth modulation triggers reacquisition of the feedback loop, which

results in an unknown initial acquisition frequency in each period. Thus, the linear frequency

modulation function of the ML estimator was modified as φ̇(t) = Δf(t − ti)/T , and ti and

t0 were estimated jointly.

At each power level the square error in the 8000 estimates were averaged to calculate

a mean-square error. A fair assessment of the estimator performance requires an accurate

knowledge of the true range to the target. A calibration run with high photon flux (yielding

approximately 1368 counts per integration window) was performed, and the ML estimate

6The incident photon number is estimated for α 	 1 by setting ηNI(1 + α(1− β2/2))/(1 + 2α) equal to
the mean photoelectron counts and solving for ηNI , which accounts for the counts lost to dead time.
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at that photon flux was assumed as the true range to the target.7 Figure 7 shows the ex-

perimental root-mean-square error obtained with the ML estimator and the FFT estimator,

as a function of ηNI . The CRB and the analytic error model for the ML estimator are also

plotted for comparison. Both estimators demonstrate good agreement with the breakdown

threshold predicted by the theoretical model, although the ML estimator demonstrates a

transient gap to the CRB before it asymptotically converges with the CRB as expected. We

conjecture that this is due to the acquisition frequency ambiguity discussed earlier. The FFT

estimator on the other hand demonstrates a factor of 3.8 penalty relative to the CRB, and

a factor of 3.4 relative to the ML estimator performance.

5. Discussion

In this paper we have provided detailed analysis of optimal range estimation using frequency-

modulated ideal laser light and continuous-time photon counting detectors that output time-

tagged photon arrivals. Our analysis has centered around three themes: understanding the

best possible performance via a study of the CRB, characterizing the performance of the

ML estimator, and experimentally validating the theory with a proof-of-concept experiment.

The theory that we have developed is sufficiently broad to provide a unified treatment of

some of the important recent advances in employing different frequency modulations, as well

as varying signal and reference field strengths. It can also be applied to other optical remote

sensing instruments where frequency estimates are calculated from coherently-detected fields,

e.g., coherent Doppler lidar.

Our CRB results reveal that the best-case mean-square error scales as 1/NI . Furthermore,

if the signal and reference field photons have equal cost, the optimal strength of the reference

field is equal to the field strength of the target-return field. When this condition is met, the

primary feature of the frequency modulation that impacts the CRB is its average energy,

7It is best to obtain the target range truth via an independent measurement. However, this was not
practical to perform on our bench-top experiment configuration. Thus, we have opted to use the mean value
of the ML and FFT estimators at the highest photon flux as the true distance to the target.
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which has permitted us to quantify the gains from employing different modulations. When

photodetector dark counts and dead time are included the CRB admits to three distinct

regimes: 1) if dark counts dominate over signal counts the CRB scales as Nd/N
2
I ; 2) if the

signal counts are high enough to dominate over dark counts but are not so high that dead

time blocks the detectors, the standard quantum limit prevails; and 3) if dead time blocks

observation of most incident photon arrivals the CRB is constant with NI . Simulating the

ML estimator has revealed two thresholds, N� and Nu, such that when N� < NI < Nu the

performance is approximately equal to the standard quantum limit, but otherwise the perfor-

mance is bounded away from this optimal scaling. We have derived analytic approximations

to these thresholds when linear frequency modulation is used, which identifies the optimal

performance regime in terms of critical system parameters. Finally, we have performed an

experimental proof-of-concept with equal reference and target-return field strengths, demon-

strating that the ML estimator behaves as predicted and that it outperforms conventional

frequency-domain estimation.

While the ML estimator has many desirable optimality properties, it also has some short-

comings that should be addressed. First, the ML estimator must know β, which implies that

the mean photon number in the target-return arm must be estimated. In this paper we have

assumed that β has been measured and is available to the estimator. However, in scenarios

when this is not feasible β and t0 must be estimated jointly, which may increase estimation

time and implementation complexity. Second, the ML estimator utilizes information in the

phase of the rate functions, in addition to that in the beat frequency. Therefore it is more

sensitive to auxiliary parameters than the conventional frequency-domain estimator we have

introduced in Section 4 (the FFT estimator). Simplifications to the ML estimator are often

sought to speed-up computation time, reduce complexity, or improve robustness at the ex-

pense of some loss in performance. Although here we have not addressed these trades, the

FFT estimator does emerge as a good candidate for linear frequency modulation.

In a field-deployed ranging system several additional uncertainties resulting from the en-
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vironment are significant. In particular, in this paper we have not considered the effects of

rough-surface scattering off of the target, atmospheric turbulence induced amplitude and

phase fluctuations in the target-return signal, ambient background radiation, photodetector

timing jitter, and calibration errors. The theory presented in this paper could be, in prin-

ciple, extended to encompass these effects by deriving the proper joint probability density

function of the photon-arrival times. However, this may prove too complex for tractable and

insightful analytic results.

In summary, we have provided a rigorous and detailed analysis of FMCW ranging with

ideal laser fields and photon-counting detectors. We have derived the CRB, including the

impact of dark counts and dead time. We have shown that the ML estimator can attain the

optimal CRB scaling of 1/NI if the mean received photon number satisfies N� < NI < Nu.

We have verified the performance of the ML estimator via a proof-of-concept experiment

and shown that it performs better than the conventional FFT estimator.

A. Appendix: Derivation of Cramér-Rao bound and ML estimator

We derive the CRB and the ML estimator for general dark count rate and dead time. Setting

these parameters to zero yields the near-ideal results in Section 2. Consider a pair of matched

photon-counting detectors in the Fig. 1 setup, having quantum efficiency η, mean dark rate

λd (in photoelectrons/s) and dead time τ (in seconds). In the following derivation we will

use Λm,d(t) ≡ Λm,d(t; t0) to keep our notation compact.

The CRB is defined in Eq. (5) and the probability density function for the photoelectron

counts is given in Eqs. (10)–(11). Taking the logarithm in Eq. (10) yields

log p(n1, u1, . . . , un1, n2, v1, . . . , vn2 ; t0) =

2∑
m=1

log f(nm, u1, . . . , unm; t0) + C1 (35)
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where C1 ≡
∫ T

0
dt [Λ1,d(t) + Λ2,d(t)] is a constant independent of t0, and

f(nm, u1, . . . , unm; t0) ≡
nm∑
i=1

log
(
Λm,d(ui)

)
+

nm+1∑
i=2

∫ ui

ui−1

dtΛm,d(t)
(
1− wτ (t− ui−1)

)
(36)

for m = 1, 2. We may express Eq. (36) as

f(nm, u1, . . . , unm; t0) ≡
∫ T

0

dt im(t)
(
log Λm,d(t) + Lm(t)

)
+

∫ T

unm+τ

dtΛm(t), (37)

in terms of Lm(t) ≡
∫ t+τ

t
dtΛm,d(t). We ignore the last term because it is an edge effect that

is typically small. In the limit that the rate functions Λm,d(t) vary slowly over the duration

τ , i.e., when |dD(t; t0)/dt|τ 	 1, we have Lm(t) ≈ τΛm,d(t), yielding

f(nm, u1, . . . , unm; t0) ≈
∫ T

0

dt im(t)
(
log Λm,d(t) + τΛm,d(t)

)
. (38)

Substituting Eq. (38) into Eq. (35), and that into Eq. (5) yields

CRB−1 =

2∑
m=1

∫ T

0

dt 〈im(t)〉
[
Λ̇2

m,d(t)

Λ2
m,d(t)

− Λ̈m,d(t)

Λm,d(t)
− τ Λ̈m,d(t)

]
. (39)

where we have used the shorthand notation Λ̇m,d(t) ≡ dΛm,d(t)/dt0 and Λ̈m,d(t) ≡

d2Λm,d(t)/dt
2
0.

The last step of evaluating the CRB is to find 〈im(t)〉. In general, this expectation is difficult

to derive for self-exciting stochastic processes. However, when the rate function varies slowly

relative to the dead time interval such that Lm(t) ≈ τΛm,d(t) holds, it has been shown that

the average photocurrent is expressible as [19]

〈im(t)〉 =
Λm,d(t)

1 + τΛm,d(t)
. (40)

This mean arrival rate has intuitive asymptotes. When Λm,d(t) 	 1, we have 〈im(t)〉 ≈
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Λm,d(t), indicating that the impact of dead time is negligible. On the other hand, if Λm,d(t) �

1, the detector is continually blocked by arrivals occurring every τ seconds, so the mean

arrival rate converges to 〈im(t)〉 ≈ 1/τ .

Substituting Eq. (40) into (39), recognizing that Λ̇1(t) = −Λ̇2(t) and Λ̈1(t) = −Λ̈2(t), and

some straightforward algebraic manipulation results in

CRB−1 =

∫ T

0

dt Λ̇2
1,d(t)

[
2∑

m=1

1

Λm,d(t)
(
1 + τΛm,d(t)

)
]
. (41)

Finally, substituting the Eq. (9) rate functions into this expression, we arrive at

CRB =

1

ηNI,d

[
1

T

∫ T

0

dt
β2
d sin

2
(
D(t; t0)

)
1− β2

d cos
2
(
D(t; t0)

) φ̇2(t− t0)
1 + α

[
1 + β2

d cos
2
(
D(t; t0)

)]
1 + 2α + α2

[
1− β2

d cos
2
(
D(t; t0)

)]
]−1

, (42)

where α = ηNI,dτ/(2T ). The Eq. (12) asymptotes follow from considering the corresponding

limits of this expression. To obtain the standard quantum limit stated in Eq. (6) we set

Nd = 0 and α = 0.

To derive the ML estimator we start with the logarithm of the probability density function

that we have derived above. Substituting Eqs. (35) and (38) into Eq. (16), followed by some

straightforward simplifications of the expressions, yields the linear filtering form of Eq. (17)

with the impulse responses specified in Eq. (18).
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Fig. 1. Block diagram of FMCW ranging. Optical fields are denoted with thick
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27



Type φ̇(t), 0 < t ≤ T T−1
∫ T

0
dt φ̇2(t)

linear Δft/T (Δf)2/3
polynomial Δf(t/T )p, p > 0 (Δf)2/(2p+ 1)
sinusoid Δf sin(2πt/T ) (Δf)2/2

(pseudo) random Δf
∑K

k=1 akbk(t), ak ∈ {−1, 1} (Δf)2

Table 1. L2 norms of various frequency modulations with identical peak-to-
peak frequency variation Δf . In the last entry, bk(t) ≡ 1 for 2K|t − (k −
1/2)T/K|/T < 1 and 0 otherwise.
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Fig. 2. The ratio of the CRB for β < 1 to that at β = 1. The solid (blue)
curve is obtained by numerically evaluating the exact expression, whereas the
dashed (green) line corresponds to the β 	 1 approximation to the CRB.
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Fig. 3. The exact CRB, normalized by T 2, is shown as the solid (blue) line.
The dashed (red) line is the dark noise asymptote, the dash-dotted (green)
line indicates the shot noise asymptote, and the dotted (cyan) line is the dead
time asymptote.
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Fig. 4. A plot of the root-mean-square error (RMSE) normalized to the width
of the range uncertainty window. The solid (red) line is the simulated per-
formance of the ML estimator, the dashed (blue) line is the CRB, and the
dash-dotted (green) line is the analytic MSE model. The vertical dashed line
is ηN�. δr is the fractional position of the object in its support.

31



10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

δr = 0.81
β = 1.00

ηN� ηNu

R
M

SE
/

ra
ng

e
un

ce
rt

ai
nt

y

ηNI [pe]

(a)

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

δr = 0.97
β = 0.10

ηN� = ηNu

R
M

SE
/

ra
ng

e
un

ce
rt

ai
nt

y

ηNI [pe]

(b)

Fig. 5. A plot of the root-mean-square error (RMSE) normalized to the width
of the range uncertainty window. The solid (red) line is the simulated per-
formance of the ML estimator, the dashed (blue) line is the CRB, and the
dash-dotted (green) line is the analytic MSE model. Vertical lines correspond
to predicted thresholds. δr is the fractional position of the object in its support.

32



To Locking

Laser

90/10
Splitter

50/50
Splitter

2X2
50/50

Splitter

Target

LO
Signal

Fiber
Coupler

Circulator

15dB
Atten

99/1
Splitter 99/1

Splitter 25dB
Atten

Variable
Atten

In Line
Polarizer

Short Delay
To Shift 

Range Peak
In Line

Polarizer
99

99
90

1
1

10

APDs

Fig. 6. Block diagram of FMCW ranging experiment.
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Fig. 7. Performance of the ML estimator and the FFT estimator, plotted as a
function of ηNI . The CRB and the ML error model are plotted for comparison.
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